Provenance And Family Variation In Biomass Potential Of Loblolly Pine In The Piedmont Of North Carolina

FOREST SCIENCE(2021)

引用 2|浏览7
暂无评分
摘要
Considerable genetic differences in loblolly pine (Pinus taeda L.) exist for growth, stem form, and wood quality traits that influence biomass/ biofuel production. By planting genetically superior trees with desirable biomass/biofuel traits, it is possible to substantially increase the amount of biomass and potential sawtimber trees produced from plantations. Ten of the fastest growing loblolly pine families from two provenances, Atlantic Coastal Plain and Piedmont, were tested for their biomass potential in North Carolina on a Piedmont site. At this northern Piedmont site at age six years, there were no provenance differences for biomass production or for trees with sawtimber potential. Variation in volume and sawtimber potential was significant at the family level. For biomass plantations, risks can be mitigated because of shorter rotation length, allowing for a higher-risk seed lot to capture greater gains in terms of volume. For a longer-rotation sawtimber stand, a more conservative family deployment strategy should be considered to maintain stem quality at the end of the rotation. Understanding the different seed source families and harvest regimes is essential to ensure profitable returns from pine plantations.Study Implications: Landowners in the southeastern United States have more choices than ever before regarding the choice of genetic stock of loblolly pine seedlings they plant, and the family selection should reflect the stand management objectives with regard to growth, stem form, and wood quality traits. In a biomass/biofuel production regime, planting families from nonlocal seed sources for increased growth can potentially increase the amount of biomass and sawtimber produced from the plantation, although risks such as increased susceptibility to winter storm damage must be considered. For biomass plantations, with shorter rotation lengths, risks can be reduced allowing for a higher-risk genotype to capture the greater gains in volume. For a sawtimber stand, genotype selections should be more conservative to ensure stem quality at the end of the rotation. Understanding different genotypes and harvest regimes is essential to maximize profit from plantations.
更多
查看译文
关键词
bioenergy, genetics, Pinus taeda, wood quality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要