Small And Large Scale Plasmonically Enhanced Luminescent Solar Concentrator For Photovoltaic Applications: Modelling, Optimisation And Sensitivity Analysis

OPTICS EXPRESS(2021)

引用 7|浏览0
暂无评分
摘要
Hybrid 3D Finite difference time domain-Monte Carlo ray tracing (FDTD-MCRT) algorithm has been developed to model and optimise small and large scale plasmonically-enhanced luminescent solar concentrator (pLSC) devices for photovoltaic (PV) applications. The configuration parameters (for example, dimensions, shape, and optical properties of metal nanoparticles, luminescent species, and host material) were used to characterise the probability of optical energy transfer and loss processes, as well as reflection, refraction, absorption, emission enhancement, and total internal reflection (TIR) in the pLSC. The algorithm was validated through modelling of various doping concentrations of CdSe/ZnS quantum dots (QD) and gold nano spheres (Au NS) where similar to 50% enhancement in optical conversion efficiency (OCE) was observed for a plasmonic composite of 2 ppm Au NS and 0.008 wt. % QD. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要