Intertwined Weyl phases emergent from higher-order topology and unconventional Weyl fermions via crystalline symmetry

NPJ QUANTUM MATERIALS(2022)

引用 7|浏览18
暂无评分
摘要
We discover three-dimensional intertwined Weyl phases, by developing a theory to create topological phases. The theory is based on intertwining existing topological gapped and gapless phases protected by the same crystalline symmetry. The intertwined Weyl phases feature both unconventional Weyl semimetallic (monopole charge>1) and higher-order topological phases, and more importantly, their exotic intertwining. While the two phases are independently stabilized by the same symmetry, their intertwining results in the specific distribution of them in the bulk. The construction mechanism allows us to combine different kinds of unconventional Weyl semimetallic and higher-order topological phases to generate distinct phases. Remarkably, on 2D surfaces, the intertwining causes the Fermi-arc topology to change in a periodic pattern against surface orientation. This feature provides a characteristic and feasible signature to probe the intertwining Weyl phases. Moreover, we provide guidelines for searching candidate materials, and elaborate on emulating the intertwined double-Weyl phase in cold-atom experiments.
更多
查看译文
关键词
Electronic properties and materials,Topological matter,Ultracold gases,Physics,general,Condensed Matter Physics,Structural Materials,Surfaces and Interfaces,Thin Films,Quantum Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要