White Rann of Kachchh harbours distinct microbial diversity reflecting its unique biogeography

Science of The Total Environment(2021)

引用 2|浏览6
暂无评分
摘要
The understanding of sub-surface soil microbial diversity is limited at both saline and hypersaline ecosystems, even though salinity is found to affect the microbial community in aqueous and terrestrial environment. In this study, a phylo-taxonomy analysis as well as the functional characteristics of microbial community of flat salt basin of White Rann of Kachchh (WR), Gujarat, India was performed along the natural salinity gradient. The high throughput sequencing approach has revealed the numerical abundance of bacteria relative to the archaea. Salinity, TOC, EC and sulphate concentration might be the primary driver of the community distribution along the transect at WR. The much anticipated effect of salinity gradient on the microbial composition surprisingly turned out to be more speculative, with little variance in the community composition along the spatial distance of WR. The metabolic pathways involved in energy metabolism (like carbon, nitrogen, sulphur) along with environmental adaptive genes (like osmotic and oxidative stress response, heat and cold shock genes clusters) were abundantly annotated from shot-gun metagenomic study. The carbonic anhydrase harbouring bacteria Bacillus sp. DM4CA1 was isolated from WR, having a catalytic ability for converting the gaseous carbon dioxide in presence of calcium carbonate into calcite at 25 % higher rate as compared to non-harbouring strains. The enzyme has a role in multiple alternative pathways in microbial metabolism. With the array of results obtained, the study could become the new reference for understanding the diversity structure and functional characteristics of the microbial community of terrestrial saline environment.
更多
查看译文
关键词
Salinity gradient,Stress environment,Carbonic anhydrase,Archaea,Oligotrophic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要