谷歌浏览器插件
订阅小程序
在清言上使用

Large-scale Nuclear Shell-Model Calculations of Isotopes in the Southwest Region of 208Pb

Progress of theoretical and experimental physics(2021)

引用 4|浏览7
暂无评分
摘要
Large-scale nuclear shell-model calculations are performed in the neutron- and proton-deficient Pt, Au, Hg, and Tl isotopes ($Z < 82$ and $N \le 126$) near $^{208}$Pb. All the single-particle levels in the one-major shells, six neutron ($2p_{1/2}$, $1f_{5/2}$, $2p_{3/2}$, $0i_{13/2}$, $1f_{7/2}$, and $0h_{9/2}$) orbitals and five proton ($2s_{1/2}$, $1d_{3/2}$, $0h_{11/2}$, $1d_{5/2}$, and $0g_{7/2}$) orbitals are considered. For an effective two-body interaction, one set of the multipole pairing, quadrupole–quadrupole interactions is employed for all the nuclei considered. These phenomenological interactions are determined to reproduce the experimental energy spectra. Some of the isomeric states are analyzed in terms of the shell-model configurations. Octupole correlated states are discussed in terms of a collective octupole excitation on top of each shell model state.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要