Inhibition of cyclooxygenase-2 enhanced intestinal epithelial homeostasis via suppressing β-catenin signalling pathway in experimental liver fibrosis.

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE(2021)

引用 5|浏览4
暂无评分
摘要
The intestinal barrier dysfunction is crucial for the development of liver fibrosis but can be disturbed by intestinal chronic inflammation characterized with cyclooxygenase-2 (COX-2) expression. This study focused on the unknown mechanism by which COX-2 regulates intestinal epithelial homeostasis in liver fibrosis. The animal models of liver fibrosis induced with TAA were established in rats and in intestinal epithelial-specific COX-2 knockout mice. The impacts of COX-2 on intestinal epithelial homeostasis via suppressing β-catenin signalling pathway were verified pharmacologically and genetically in vivo. A similar assumption was tested in Ls174T cells with goblet cell phenotype in vitro. Firstly, disruption of intestinal epithelial homeostasis in cirrhotic rats was ameliorated by celecoxib, a selective COX-2 inhibitor. Then, β-catenin signalling pathway in cirrhotic rats was associated with the activation of COX-2. Furthermore, intestinal epithelial-specific COX-2 knockout could suppress β-catenin signalling pathway and restore the disruption of ileal epithelial homeostasis in cirrhotic mice. Moreover, the effect of COX-2/PGE2 was dependent on the β-catenin signalling pathway in Ls174T cells. Therefore, inhibition of COX-2 may enhance intestinal epithelial homeostasis via suppression of the β-catenin signalling pathway in liver fibrosis.
更多
查看译文
关键词
celecoxib, COX-2, intestinal homeostasis, liver fibrosis, beta-catenin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要