Simple and Sensitive Multi-components Detection Using Synthetic Nitrogen-doped Carbon Dots Based on Soluble Starch

JOURNAL OF FLUORESCENCE(2021)

引用 2|浏览0
暂无评分
摘要
Although carbon dots (CDs) as fluorescent sensors have been widely exploited, multi-component detection using CDs without tedious surface modification is always a challenging task. Here, two kinds of nitrogen-doped CDs (NCD-m and NCD-o) based on soluble starch (SS) as carbon source were prepared through one-pot hydrothermal process using m-phenylenediamine and o-phenylenediamine as nitrogenous dopant respectively. Through fluorescence “on–off” mechanism of CDs, NCD-m and NCD-o could be used as a fluorescence sensor for detection of Fe 3+ and Ag + with LOD of 0.25 and 0.51 μM, respectively. Additionally, NCD-m could be used for indirect detection of ascorbic acid (AA) with LOD of 5.02 μM. Moreover, fluorescence intensity of NCD-m also exhibited the sensitivity to pH change from 2 to 13. More importantly, Both NCD-m and NCD-o had potential application for analysis of complicated real samples such as tap water, Vitamin C tablets and orange juice. Ultimately, the small size of NCD-m could contribute to reinforcing intracellular endocytosis, which allowed them to be used for bacteria imaging. Obviously, these easily obtainable nitrogen-doped CDs were able to be used for multi-components detection. Graphical abstract Strategy for synthesis of nitrogen-doped carbon dots (NCDs) and a schematic for fabrication of as-prepared NCDs for detection of Fe 3+ , Ag + and ascorbic acid (AA).
更多
查看译文
关键词
Carbon dots,Metal ions,Ascorbic acid,Sensor,Bioimaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要