谷歌浏览器插件
订阅小程序
在清言上使用

How Crosslink Numbers Shape the Large-Scale Physics of Cytoskeletal Materials

arxiv(2021)

引用 0|浏览9
暂无评分
摘要
Cytoskeletal networks are the main actuators of cellular mechanics, and a foundational example for active matter physics. In cytoskeletal networks, motion is generated on small scales by filaments that push and pull on each other via molecular-scale motors. These local actuations give rise to large scale stresses and motion. To understand how microscopic processes can give rise to self-organized behavior on larger scales it is important to consider what mechanisms mediate long-ranged mechanical interactions in the systems. Two scenarios have been considered in the recent literature. The first are systems which are relatively sparse, in which most of the large scale momentum transfer is mediated by the solvent in which cytoskeletal filaments are suspended. The second, are systems in which filaments are coupled via crosslink molecules throughout. Here, we review the differences and commonalities between the physics of these two regimes. We also survey the literature for the numbers that allow us to place a material within either of these two classes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要