Cellular Calcium Levels Influenced by NCA-2 Impact Circadian Period Determination in Neurospora

MBIO(2021)

引用 5|浏览12
暂无评分
摘要
Intracellular calcium signaling has been implicated in the control of a variety of circadian processes in animals and plants, but its role in microbial clocks has remained largely cryptic. To examine the role of intracellular Ca2+ in the Neurospora clock, we screened mutants with knockouts of calcium transporter genes and identified a gene encoding a calcium exporter, nca-2, uniquely as having significant period effects. The loss of NCA-2 results in an increase in the cytosolic calcium level, and this leads to hyper-phosphorylation of core clock components, FRQ and WC-1, and a short period, as measured by both the core oscillator and the overt clock. Genetic analyses showed that mutations in certain frq phospho-sites and in Ca2+-calmodulin-dependent kinase 2 (camk-2) are epistatic to nca-2 in controlling the pace of the oscillator. These data are consistent with a model in which elevated intracellular Ca2+ leads to the increased activity of CAMK-2, leading to enhanced FRQ phosphorylation, accelerated closure of the circadian feedback loop, and a shortened circadian period length. At a mechanistic level, some CAMKs undergo more auto-phosphorylations in the Dnca-2 mutant, consistent with high calcium levels in the Dnca-2 mutant influencing the enzymatic activities of CAMKs. NCA-2 interacts with multiple proteins, including CSP-6, a protein known to be required for circadian output. Most importantly, the expression of nca-2 is circadian clock-controlled at both the transcriptional and translational levels, and this in combination with the period effects seen in strains lacking NCA-2 firmly places calcium signaling within the larger circadian system, where it acts as both an input to and an output from the core clock. IMPORTANCE Circadian rhythms are based on cell-autonomous, auto-regulatory feedback loops formed by interlocked positive and negative arms, and they regulate myriad molecular and cellular processes in most eukaryotes, including fungi. Intracellular calcium signaling is also a process that impacts a broad range of biological events in most eukaryotes. Clues have suggested that calcium signaling can influence circadian oscillators through multiple pathways; however, mechanistic details have been lacking in microorganisms. When we built on prior work describing calcium transporters in the fungus Neurospora, one such transporter, NCA-2, was identified as a regulator of circadian period length. Increased intracellular calcium levels caused by the loss of NCA-2 resulted in overactivation of calcium-responsive protein kinases, in turn leading to a shortened circadian period length. Importantly, the expression of NCA-2 is itself controlled by the molecular clock. In this way, calcium signaling can be seen as providing both input to and output from the circadian system.
更多
查看译文
关键词
nca-2, calcium, FRQ, FRQ phosphorylation, Ca2+-CaM-dependent kinases, CAMK
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要