Global changes in soil organic carbon and implications for land degradation neutrality and climate stability.

Environmental research(2021)

引用 24|浏览2
暂无评分
摘要
Soil organic carbon (SOC) is a critical indicator for healthy and fertile lands across the world. It is also the planet's largest terrestrial carbon pool, so any changes of this pool may have profound implications for both land productivity and climate stability. However, SOC changes have so far remained largely unexplored, although their understanding is essential for many international environmental policies. Here we investigate for the first time recent global SOC changes, based on some SOC stock interannual data that were processed for the 2001-2015 period on a planetary scale. We analysed the global SOC dynamics using the Mann-Kendall test and Sen's slope estimator, which are widely acknowledged to be reliable geostatistical tools for detecting various environmental trends from global to local scale. We explored SOC changes via three metrics (averages, quantities, areas) of negative and positive trends, but also of the balance between soil carbon trends, a key statistic for monitoring land quality stability and soil-atmosphere carbon fluxes in the global environmental policies. Globally, we estimated a net average decrease of -58.6 t C km2 yr-1, a total loss of ~3.1 Pg C, and an area affected by net SOC losses of ~1.9 million km2. Using this triple statistic, we found that 79% of countries worldwide have been affected by net declines of SOC after 2001, which suggests that halting land degradation and mitigating climate change through the SOC pathway are still far from being achieved by international policies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要