Inheritance Pattern of Mungbean Yellow Mosaic Virus (MYMV) Disease Resistance in Blackgram [Vigna mungo (L.) Hepper]

Legume Research(2023)

引用 0|浏览2
暂无评分
摘要
Background: Mungbean yellow mosaic virus (MYMV) disease is the most destructive disease in blackgram. Development of MYMV resistant varieties is one of the best possible solutions to avoid the yield reduction in blackgram. There are conflicting reports on the genetics of resistance to MYMV disease claiming that it is controlled by both dominant and recessive genes. Hence the present study was aimed to understand the inheritance pattern of the MYMV disease resistance in eight crosses of blackgram. Methods: Parents, F1 and F2 generation of eight cross combinations were raised during July-Sep, 2018 at National Pulses Research Centre, Tamil Nadu Agricultural University, Vamban, Tamil Nadu. An infector row of CO 5 was raised to intensify the MYMV disease pressure after every eight rows. Based on disease incidence on 60th day after sowing, two phenotypic classes were formed among F2 plants with the scales of (1 to 3) as resistant phenotype and (4 to 9) as susceptible phenotype. The goodness of fit to Mendelian segregation ratio for MYMV disease resistance in the segregating population was tested by Chi square test (Stansfield, 1991). Result: The MYMV disease incidence was tri-genically controlled with inhibitory gene action in four crosses viz., MDU 1 x Mash 114, CO5 x Mash 114, MDU 1 x VBN 6 and CO 5 x VBN 6. Complementary gene action with two genes was observed in four crosses viz., MDU 1 x Mash 1008, CO 5 x Mash 1008, MDU 1 x VBN 8 and CO 5 x VBN 8. Differences in number of genes were observed due to the presence of recessive inhibitory gene in both male and female parents of the crosses which had complementary gene action for MYMV disease. The putative gene symbols assigned for the six genotypes viz., S1S1S2S2ii (MDU 1 and CO 5), s1s1s2s2II (Mash 114 and VBN 6) and s1s1s2s2ii (Mash 1008 and VBN 8), respectively.
更多
查看译文
关键词
Blackgram, Complementary gene action, Genetics, Inhibitory gene action, MYMV disease
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要