谷歌浏览器插件
订阅小程序
在清言上使用

Dirac States in the Noncentrosymmetric Superconductor BiPd

Physical review B/Physical review B(2021)

引用 3|浏览16
暂无评分
摘要
Quantum materials having Dirac fermions in conjunction with superconductivity is believed to be the candidate material to realize exotic physics as well as advanced technology. Angle-resolved photoemission spectroscopy (ARPES), a direct probe of the electronic structure, has been extensively used to study these materials. However, experiments often exhibit conflicting results on dimensionality and momentum of the Dirac fermions (e.g., Dirac states in BiPd, a novel noncentrosymmetric superconductor), which is crucial for the determination of the symmetry, time-reversal invariant momenta, and other emerging properties. Employing high-resolution ARPES at varied conditions, we demonstrated a methodology to identify the location of the Dirac node accurately and discover that the deviation from two dimensionality of the Dirac states in BiPd proposed earlier is not a material property. These results helped to reveal the topology of the anisotropy of the Dirac states accurately. We have constructed a model Hamiltonian considering higher-order spin-orbit terms and demonstrate that this model provides an excellent description of the observed anisotropy. Intriguing features of the Dirac states in a noncentrosymmetric superconductor revealed in this study are expected to have significant implications regarding the properties of topological superconductors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要