Directly Grown Crystalline Gallium Phosphide On Sapphire For Nonlinear All-Dielectric Nanophotonics

APPLIED PHYSICS LETTERS(2021)

引用 35|浏览3
暂无评分
摘要
Efficient second harmonic generation (SHG) in nanophotonic designs based on all-dielectric nanostructures demands materials with large values of the quadratic nonlinear susceptibility, low dissipative losses, and high refractive index. One of the best materials meeting all these parameters is gallium phosphide (GaP). However, second-order nonlinearity requires high crystallinity and morphology quality of the GaP layer grown for further lithographic processing. Here we develop a method to fabricate high-quality crystalline GaP metasurfaces, which demonstrate pronounced linear and nonlinear optical properties. Direct growth of a GaP layer on a sapphire substrate tackles the previous problem of wafer bonding, because of high optical contrast between fabricated resonant nanoparticles and the substrate. As a result, the fabricated GaP metasurface supports bound state in continuum mode with an experimental quality factor around 100 yielding a strong enhancement of SHG in narrow spectral range. We believe that the developed approach will become a versatile platform for nonlinear all-dielectric nanophotonics.
更多
查看译文
关键词
crystalline gallium phosphide,sapphire,all-dielectric
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要