Disassembly of Death-associated Protein Kinase and DANGER Interaction Mediates Hippocampal CA1 Neuron Death in Rat Cerebral Ischemic Reperfusion

Neuroscience(2021)

引用 1|浏览1
暂无评分
摘要
Death-associated protein kinase (DAPK) is a Ca2+/CaM-regulated protein kinase that is involved in cell death processes by multiple pathways. It has been reported that DAPK may play a role in brain ischemia-induced neuronal death, but this mechanism is not well understood. DANGER, a membrane-associated protein that binds to DAPK physiologically, inhibits DAPK activation. In the present study, we used a transient global brain ischemia and reperfusion (I/R) rat model to investigate whether the interaction between DAPK and DANGER is involved in neuronal cell death following brain ischemia, and to reveal the mechanism of action. Our results indicate that the DAPK/DANGER interaction in the hippocampal CA1 region was significantly reduced after I/R with a peak reduction at 6 h. We further demonstrate that the NMDA inhibitor MK-801, DAPK inhibitor, or calcineurin inhibitor FK-506 prevented the dissociation of DANGER from DAPK 6 h after I/R. This was accompanied by a significantly decreased I/R-induced dephosphorylation of DAPK(ser-308), inhibiting DAPK catalytic activity. Moreover, the expression of DANGER and the interaction between DANGER and IP3R on the endoplasmic reticulum was significantly increased at I/R 6 h, which may be related to a reduction of DAPK/DANGER binding under I/R condition. Furthermore, MK-801, DAPK inhibitor and FK-506 had neuroprotective effects against hippocampal CA1 neuronal death 5 days after I/R. In conclusion, our data suggest that the dissociation of DANGER from DAPK may mediate DAPK activation, which is involved in DAPK-related neuronal death following I/R injury.
更多
查看译文
关键词
DAPK,DANGER,cerebral ischemia,neuroprotection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要