Chrome Extension
WeChat Mini Program
Use on ChatGLM

Co-delivery of gefitinib and hematoporphyrin by aptamer-modified fluorinated dendrimer for hypoxia alleviation and enhanced synergistic chemo-photodynamic therapy of NSCLC.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences(2021)

Cited 12|Views19
No score
Abstract
Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs)-based molecular targeted therapy are proved to be effective in the treatment of non-small cell lung cancer (NSCLC) with EGFR mutation, its efficacy is limited by the acquired drug resistance. The combination of EGFR-TKIs with photodynamic therapy (PDT) has been explored to combat NSCLC with promising synergistic results. However, hypoxic tumor microenvironment is associated with the development of EGFR-TKIs resistance and severely limits the efficacy of PDT. Here, we synthesized an aptamer modified fluorinated dendrimer (APF) as a drug carrier and prepared nanocomplexes APFHG by encapsulation of gefitinib (Gef) and hematoporphyrin (Hp). APF has good oxygen-carrying capacity, high drug entrapment efficiency, and could release Gef and Hp in response to intracellular pH. APF can specifically recognize EGFR-positive NSCLC cells and effectively improve the tumor hypoxic microenvironment due to the targeting effect of aptamer and the good oxygen-carrying capacity of the fluorinated dendrimer. Under the laser irradiation, APFHG can significantly increase the production of the intracellular reactive oxygen species and produce a synergistic therapeutic effect in inhibition of cellular growth and induction of cell cycle arrest and apoptosis on both Gef-sensitive and Gef-resistant EGFR-mutant NSCLC cells through PDT/molecular targeted therapy. This work indicates that fluorinated dendrimer could be a potent drug delivery platform to overcome hypoxia-related resistance and the co-delivery of EGFR-TKI and photosensitizer by the fluorinated dendrimer could be a promising therapeutic approach for reversal of EGFR-TKIs resistance in EGFR mutation-positive NSCLC.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined