Chrome Extension
WeChat Mini Program
Use on ChatGLM

Cell differentiation in the cardiac embryonic stem cell test (ESTc) is influenced by the oxygen tension in its underlying embryonic stem cell culture.

Toxicology in vitro : an international journal published in association with BIBRA(2021)

Cited 1|Views12
No score
Abstract
Oxygen (O2) levels in the mammalian embryo range between 2.4% and 8%. The cardiac embryonic stem cell test (ESTc) is a model for developmental toxicity predictions, which is usually performed under atmospheric O2 levels of 20%. We investigated the chemical sensitivity of the ESTc carried out under 20% O2, using embryonic stem cells (ESC) cultured under either 20% O2 or 5% O2. ESC viability was more sensitive to valproic acid (VPA) but less sensitive to flusilazole (FLU) when cultured under 5% versus 20% O2. For beating cardiomyocyte differentiation, lower ID50 values were found for FLU and VPA when the ESCs had been cultured under 5% versus 20% O2. At differentiation day 4, gene expression values were primarily driven by the level of O2 during ESC culture instead of exposure to FLU. In addition, using ESCs cultured under 5% O2 tension, VPA enhanced Nes (ectoderm) expression. Bmp4 (mesoderm) was enhanced by VPA when using ESCs cultured under 20% O2. At differentiation day 10, using ESCs cultured under 5% instead of 20% O2, Nkx2.5 and Myh6 (cardiomyocytes) were less affected after exposure to FLU or VPA. These results show that O2 tension in ESC culture influences chemical sensitivity in the ESTc. This enhances awareness of the standard culture conditions, which may impact the application of the ESTc in quantitative hazard assessment of chemicals.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined