Design, synthesis, and biological evaluation of novel pyrrolidinone small-molecule Formyl peptide receptor 2 agonists.

European journal of medicinal chemistry(2021)

引用 1|浏览25
暂无评分
摘要
A series of Formyl peptide receptor 2 small molecule agonists with a pyrrolidinone scaffold, derived from a combination of pharmacophore modelling and docking studies, were designed and synthesized. The GLASS (GPCR-Ligand Association) database was screened using a pharmacophore model. The most promising novel ligand structures were chosen and then tested in cellular assays (calcium mobilization and β-arrestin assays). Amongst the selected ligands, two pyrrolidinone compounds (7 and 8) turned out to be the most active. Moreover compound 7 was able to reduce the number of adherent neutrophils in a human neutrophil static adhesion assay which indicates its anti-inflammatory and proresolving properties. Further exploration and optimization of new ligands showed that heterocyclic rings, e.g. pyrazole directly connected to the pyrrolidinone scaffold, provide good stability and a boost in the agonistic activity. The compounds of most interest (7 and 30) were tested in an ERK phosphorylation assay, demonstrating selectivity towards FPR2 over FPR1. Compound 7 was examined in an in vivo mouse pharmacokinetic study. Compound 7 may be a valuable in vivo tool and help improve understanding of the role of the FPR2 receptor in the resolution of inflammation process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要