High-Dose Irradiation Inhibits Motility And Induces Autophagy In Caenorhabditis Elegans

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2021)

引用 2|浏览10
暂无评分
摘要
Radiation damages many cellular components and disrupts cellular functions, and was previously reported to impair locomotion in the model organism Caenorhabditis elegans. However, the response to even higher doses is not clear. First, to investigate the effects of high-dose radiation on the locomotion of C. elegans, we investigated the dose range that reduces whole-body locomotion or leads to death. Irradiation was performed in the range of 0-6 kGy. In the crawling analysis, motility decreased after irradiation in a dose-dependent manner. Exposure to 6 kGy of radiation affected crawling on agar immediately and caused the complete loss of motility. Both gamma-rays and carbon-ion beams significantly reduced crawling motility at 3 kGy. Next, swimming in buffer was measured as a motility index to assess the response over time after irradiation and motility similarly decreased. However, swimming partially recovered 6 h after irradiation with 3 kGy of gamma-rays. To examine the possibility of a recovery mechanism, in situ GFP reporter assay of the autophagy-related gene lgg-1 was performed. The fluorescence intensity was stronger in the anterior half of the body 7 h after irradiation with 3 kGy of gamma-rays. GFP::LGG-1 induction was observed in the pharynx, neurons along the body, and the intestine. Furthermore, worms were exposed to region-specific radiation with carbon-ion microbeams and the trajectory of crawling was measured by image processing. Motility was lower after anterior-half body irradiation than after posterior-half body irradiation. This further supported that the anterior half of the body is important in the locomotory response to radiation.
更多
查看译文
关键词
region-specific irradiation, microbeam, locomotion, swimming, autophagy, C, elegans
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要