Feeding effects on liver mitochondrial bioenergetics of Boa constrictor (Serpentes: Boidae)

JOURNAL OF EXPERIMENTAL BIOLOGY(2021)

引用 2|浏览3
暂无评分
摘要
Snakes are interesting examples of taxa that can overcome energy metabolism challenges, as many species can endure long periods without feeding, and their eventual meals are of reasonably large sizes, thus exhibiting dual extreme adaptations. Consequently, metabolic rate increases considerably to attend to the energetic demand of digestion, absorption and protein synthesis. These animals should be adapted to transition from these two opposite states of energy fairly quickly, and therefore we investigated mitochondrial function plasticity in these states. Herein, we compared liver mitochondrial bioenergetics of the boid snake Boa constrictor during fasting and after meal intake. We fasted the snakes for 60 days, and then we fed a subgroup with 30% of their body size and evaluated their maximum postprandial response. We measured liver respiration rates from permeabilized tissue and isolated mitochondria. From isolated mitochondria, we also measured Ca2+ retention capacity and redox status. Mitochondrial respiration rates were maximized after feeding, reaching an approximately 60% increase from fasting levels when energized with complex I-linked substrates. Interestingly, fasting and fed snakes exhibited similar respiratory control ratios and citrate synthase activity. Furthermore, we found no differences in Ca2+ retention capacity, indicating no increase in susceptibility to mitochondrial permeability transition, and no changes in mitochondrial redox state, although fed animals exhibited increases in the release of H2O2. Thus, we conclude that liver mitochondria from B. constrictor snakes increase respiration rates during the postprandial period and quickly improve the bioenergetic capacity without compromising redox balance.
更多
查看译文
关键词
Fasting, Specific dynamic action, Liver mitochondria, Calcium retention capacity, Mitochondrial permeability transition, Redox balance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要