The impact of outdoor walking surfaces on lower-limb coordination and variability during gait in healthy adults.

Gait & posture(2021)

引用 8|浏览7
暂无评分
摘要
BACKGROUND:Inter-joint coordination and variability during gait provide insight into control and adaptability of the neuromuscular system. To date, coordination research has been restricted to laboratory settings, and it is unclear how these findings translate to real-world, outdoor walking environments. RESEARCH QUESTION:Compared to flat walking, to what extent do outdoor surfaces impact lower-limb inter-joint coordination and variability during gait, in healthy adults? METHODS:Data from inertial measurement units placed on the lower-back, thigh, and shank were extracted from thirty healthy young adults (15 females, 23.5 ± 4.2 years) during outdoor walking on flat (paved sidewalk); irregular (cobblestone, grass); sloped (slope-up, slope-down); and banked (banked-right, banked-left) surfaces. Sagittal joint angles for the right knee and hip were computed and partitioned by gait phase (stance and swing). Continuous Relative Phase analysis determined inter-joint coordination and variability for the knee-hip joint pair using Mean Absolute Relative Phase (MARP) and Deviation Phase (DP), respectively. One-way repeated measures ANOVAs tested surface effects. Post-hoc Bonferroni adjusted surface comparisons were assessed. RESULTS:Significant knee-hip surface effects were seen during all gait phases for MARP (p < 0.001) and DP (p ≤ 0.001). Compared to flat walking, grass prompted more in-phase coordination (smaller MARP) during stance and swing phase (p ≤ 0.003). Slope-up caused more in-phase coordination during stance (p < 0.001), while slope-down caused more out-of-phase coordination during stance and swing (p ≤ 0.003), compared to the flat surface. Sloped surfaces prompted more variable (larger DP) knee-hip coordination (p ≤ 0.001), compared to flat walking during stance and swing phase. SIGNIFICANCE:Compared to flat walking, changes in knee-hip coordination and variability were greatest on slope-up/slope-down surfaces. This could reflect greater changes in lower-limb kinematics on sloped surfaces and/or a neuromuscular response to the demands of a more challenging task.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要