Dynamic Properties and Fractal Characteristics of 3D Printed Cement Mortar in SHPB Test.

MATERIALS(2021)

引用 4|浏览1
暂无评分
摘要
Comparing with the traditional construction process, 3D printing technology used in construction offers many advantages due to the elimination of formwork. Currently, 3D printing technology used in the construction field is widely studied, however, limited studies are available on the dynamic properties of 3D printed materials. In this study, the effects of sand to binder ratios and printing directions on the fractal characteristics, dynamic compressive strength, and energy dissipation density of 3D printed cement mortar (3DPCM) are explored. The experiment results indicate that the printing direction has a more significant influence on the fractal dimension compared with the sand to binder ratio (S/B). The increasing S/B first causes an increase and then results in a decline in the dynamic compressive strength and energy dissipation of different printing directions. The anisotropic coefficient of 3DPCM first is decreased by 20.67%, then is increased by 10.56% as the S/B increases from 0.8 to 1.4, showing that the anisotropy is first mitigated, then increased. For the same case of S/B, the dynamic compressive strength and energy dissipation are strongly dependent on the printing direction, which are the largest printing in the Y-direction and the smallest printing in the X-direction. Moreover, the fractal dimension has certain relationships with the dynamic compressive strength and energy dissipation density. When the fractal dimension changes from 2.0 to 2.4, it shows a quadratic relationship with the dynamic compressive strength and a logarithmic relationship with the energy dissipation density in different printing directions. Finally, the printing mortar with an S/B = 1.1 is proved to have the best dynamic properties, and is selected for the 3D printing of the designed field barrack model.
更多
查看译文
关键词
3D printing, mortar, dynamic compressive strength, anisotropy, energy dissipation density, fractal dimension
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要