Carbon-Based Electrochemical Sensors for In Vivo and In Vitro Neurotransmitter Detection.

Critical reviews in analytical chemistry(2021)

引用 3|浏览6
暂无评分
摘要
As essential neurological chemical messengers, neurotransmitters play an integral role in the maintenance of normal mammalian physiology. Aberrant neurotransmitter activity is associated with a range of neurological conditions including Parkinson's disease, Alzheimer's disease, and Huntington's disease. Many studies to date have tested different approaches to detecting neurotransmitters, yet the detection of these materials within the brain, due to the complex environment of the brain and the rapid metabolism of neurotransmitters, remains challenging and an area of active research. There is a clear need for the development of novel neurotransmitter sensing technologies capable of rapidly and sensitively monitoring specific analytes within the brain without adversely impacting the local microenvironment in which they are implanted. Owing to their excellent sensitivity, portability, ease-of-use, amenability to microprocessing, and low cost, electrochemical sensors methods have been widely studied in the context of neurotransmitter monitoring. The present review, thus, surveys current progress in this research field, discussing developed electrochemical neurotransmitter sensors capable of detecting dopamine (DA), serotonin (5-HT), acetylcholine (Ach), glutamate (Glu), nitric oxide (NO), adenosine (ADO), and so on. Of these technologies, those based on carbon nanostructures-modified electrodes including carbon nanotubes (CNTs), graphene (GR), gaphdiyne (GDY), carbon nanofibers (CNFs), and derivatives thereof hold particular promise owing to their excellent biocompatibility and electrocatalytic performance. The continued development of these and related technologies is, thus, likely to lead to major advances in the clinical diagnosis of neurological diseases and the detection of novel biomarkers thereof.
更多
查看译文
关键词
Carbon materials,electrochemical sensor,in vivo,neurotransmitters
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要