Antibacterial fluorescent nano-sized lanthanum-doped carbon quantum dot embedded polyvinyl alcohol for accelerated wound healing.

Journal of colloid and interface science(2021)

引用 25|浏览7
暂无评分
摘要
Bacteria is one of the main culprits that cause human diseases and pose long-term challenges to people's health. Rare earth elements have unique antibacterial advantages, but little research is available. In this paper, we reported an antibacterial composite film based on lanthanum-doped carbon quantum dot nanoparticles (La@N-P-CQDs) and polyvinyl alcohol (PVA) film for fluorescence of antibiotics and accelerating wound healing. PVA/La@N-P-CQDs composite film presented excellent hydrophilicity, biocompatibility, fluorescence intensity, and antibacterial effects. The antibacterial activity of La@N-P-CQDs was evaluated by employing antibacterial assay using Escherichia coli (E.coli)and Staphylococcus aureus (S.aureus) in vitro. La@N-P-CQDs showed enhanced antibacterial activity compared with N-P-CQDs. Moreover, the PVA/La@N-P-CQDs composite film with 0.5 mg/mL La@N-P-CQDs showed better antibacterial capability and wound healing performance than PVA and PVA/N-P-CQDs films in bacterial adhesion experiment. PVA/La@N-P-CQDs composite film could be used for wound dressing in vivo experiment and had no side effects on major organs in mice. The antibacterial composite film significantly promoted in vivo wound healing process because of its multifunctional properties. Therefore, it was an excellent candidate for wound dressing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要