Competition between distinct ApoE alleles and mCRP for the endothelial receptor CD31 differentially regulates neurovascular inflammation and Alzheimer’s disease pathology

biorxiv(2021)

引用 0|浏览2
暂无评分
摘要
BACKGROUND C-reactive protein (CRP) in peripheral inflammation is associated with increased Alzheimer’s disease (AD) risk in Apolipoprotein E4 (ApoE4), but not ApoE3 or E2, humans. It remains unknown whether peripheral monomeric CRP (mCRP) induces AD pathogenesis through some receptor of blood-facing endothelia in the brain in an ApoE genotype dependent fashion. METHODS We used human samples, ApoE knock-in and deficient mouse models, and primary brain endothelia. Different ApoE mice were intraperitoneally (i.p.) injected with mCRP. The characterizations by immunostaining, proximity ligation assay (PLA) and siRNA were conducted to identify the receptor for mCRP. Brain microvessel and endothelia were isolated for RNA sequencing to explore the molecular pathway. RESULTS We demonstrate that CD31 (PECAM-1), a blood-facing endothelial receptor in brain, is a competitive target of both mCRP and ApoE protein. ApoE2 competes more strongly with mCRP for CD31 than ApoE4 does, and expressing ApoE4 or knocking out ApoE gene results in higher levels of mCRP-CD31 binding, leading to a decrease of CD31 expression but an increase in CD31 phosphorylation, along with greater cerebrovascular damage and AD pathology. This competitive binding mediates differential endothelial molecular responses depending on ApoE genotype, increasing cerebrovascular inflammation and mitochondria impairment in ApoE4 mice, while inducing vasculogenesis and protective changes in the presence of ApoE2. CONCLUSIONS Our study reveals a novel and dynamic endothelial ApoE-mCRP-CD31 pathway for AD pathogenesis during chronic inflammation and provides some insight into the opposing ApoE4-neurodegenerative and ApoE2-neuroprotective effects in AD. WHAT IS NEW? WHAT ARE THE CLINICAL IMPLICATIONS? ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要