Identification of genetic markers and wood properties that predict wood biorefinery potential in aspen bioenergy feedstock (Populus tremula)

biorxiv(2021)

引用 2|浏览7
暂无评分
摘要
Wood represents the majority of the biomass on lands, and it constitutes a renewable source of biofuels and other bioproducts. However, wood is recalcitrant to bioconversion, meaning that feedstocks must be improved. We investigated the properties of wood that affect bioconversion, as well as the underlying genetics, to help identify superior biorefinery tree feedstocks. We recorded as many as 65 wood-related and growth traits in a population of European aspen natural genotypes. These traits included three growth and field performance traits, 20 traits for wood chemical composition, 17 traits for wood anatomy and structure, and 25 wood saccharification traits as indicators of bioconversion potential. We used statistical modelling to determine which wood traits best predict bioconversion yield traits. This way, we identified a core set of wood properties that predict bioprocessing traits. Several of these predictor traits showed high broad-sense heritability, suggesting potential for genetic improvement of feedstocks. Finally, we performed genome-wide association study (GWAS) to identify genetic markers for yield traits or for wood traits that predict yield. GWAS revealed only a few genetic markers for saccharification yield traits, but many more SNPs were associated with wood chemical composition traits, including predictors traits for saccharification. Among them, 16 genetic markers associated specifically with lignin chemical composition were situated in and around two genes which had not previously been associated with lignin. Our approach allowed linking aspen wood bioprocessing yield to wood properties and the underlying genetics, including the discovery of two new potential regulator genes for wood chemical composition. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要