Role of RALBP1 in Oxidative Stress and Mitochondrial Dysfunction in Alzheimer’s Disease

biorxiv(2021)

引用 8|浏览0
暂无评分
摘要
The purpose of our study is to understand the role of the Ralbp1 gene in oxidative stress (OS), mitochondrial dysfunction and cognition in Alzheimer’s disease (AD) pathogenesis. The Ralbp1 gene encodes the 76 kDa protein Rlip ( aka RLIP76). Previous studies have revealed its role in OS-related cancer. However, Rlip is transcriptionally regulated by EP300 , a CREB-binding protein that is important for synaptic plasticity in the brain. Rlip functions as a stress-responsive/protective transporter of glutathione conjugates (GS-E) and xenobiotic toxins. OS causes rapid cellular accumulation of Rlip and its translocation from a tubulin-bound complex to the plasma membrane, mitochondria and nucleus. Therefore, Rlip may play an important role in maintaining cognitive function in the face of OS-related injury. This study is aimed to determine whether Rlip deficiency in mice is associated with AD-like cognitive and mitochondrial dysfunction. Brain tissue obtained from cohorts of wildtype and Rlip+/- mice were analyzed for OS markers, expression of genes that regulate mitochondrial fission/fusion, and synaptic integrity. We also examined mitochondrial ultrastructure in mouse brains obtained from these mice and further analyzed the impact of Rlip deficiency on gene networks of AD, aging, inhibition of stress-activated gene expression, mitochondrial function, and CREB signaling. Our studies revealed a significant increase in the levels of OS markers and alterations in the expression of genes and proteins involved in mitochondrial biogenesis, dynamics and synapses in brain tissues of these mice. Furthermore, we compared the cognitive function of wildtype and Rlip+/- mice. Behavioral, basic motor and sensory function tests in Rlip+/- mice revealed cognitive decline, similar to AD. Gene network analysis indicated dysregulation of stress-activated gene expression, mitochondrial function, and CREB signaling genes in the Rlip+/- mouse liver. Our results suggest that the Rlip deficiency-associated increase in OS and mitochondrial dysfunction could contribute to the development of OS-related AD processes. Therefore, the restoration of Rlip activity and endogenous cytoprotective mechanisms by pharmacological interventions is a novel approach to protect against AD. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
Alzheimer's disease, mitochondria, mitophagy, mitochondrial biogenesis, synaptic proteins
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要