谷歌浏览器插件
订阅小程序
在清言上使用

Nanocrown electrodes for reliable and robust intracellular recording of cardiomyocytes and cardiotoxicity screening

bioRxiv(2022)

引用 0|浏览10
暂无评分
摘要
Drug-induced cardiotoxicity arises primarily when a compound alters the electrophysiological properties of cardiomyocytes. Features of intracellular action potentials (iAPs) are powerful biomarkers that predict proarrhythmic risks. However, the conventional patch clamp techniques for measuring iAPs are either laborious and low throughput or not suitable for measuring electrically connected cardiomyocytes. In the last decade, a number of vertical nanoelectrodes have been demonstrated to achieve parallel and minimally-invasive iAP recordings. Nanoelectrodes show great promise, but the large variability in success rate, signal strength, and the low throughput of device fabrication have hindered them from being broadly adopted for proarrhythmia drug assessment. In this work, we developed vertically-aligned and semi-hollow nanocrown electrodes that are mechanically robust and made through a scalable fabrication process. Nanocrown electrodes achieve >99% success rates in obtaining intracellular access through electroporation, allowing reliable and simultaneous iAP recordings from up to 57 human pluripotent stem-cell-derived cardiomyocytes (hPSC-CMs). The accuracy of nanocrown electrode recordings is validated by simultaneous patch clamp recording from the same cell. Nanocrown electrodes enable prolonged iAP recording for continual monitoring of the same cells upon the sequential addition of four to five incremental drug doses. In this way, the dose-response data is self-referencing, which avoids the cell-to-cell variations inherent to hPSC-CMs. We are hopeful that this technology development is a step towards establishing an iAP screening assay for preclinical evaluation of drug-induced arrhythmogenicity. ### Competing Interest Statement The authors have declared no competing interest. * NEAs : Nano-pillar Electrode Arrays AP : Action Potential iAP : Intracellular Action Potential eAP : Extracellular Action Potential
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要