谷歌浏览器插件
订阅小程序
在清言上使用

Integrated Regulation of PKA by Fast and Slow Neurotransmission in the Nucleus Accumbens Controls Plasticity and Stress Responses

Journal of biological chemistry/˜The œJournal of biological chemistry(2022)

引用 0|浏览22
暂无评分
摘要
Cortical glutamate and midbrain dopamine neurotransmission converge to mediate striatum-dependent behaviors, while maladaptations in striatal circuitry contribute to mental disorders. Here we uncover a molecular mechanism by which glutamatergic and dopaminergic signaling integrate to regulate cAMP-dependent protein kinase (PKA) via phosphorylation of the PKA regulatory subunit, RIIβ. We find that glutamate-dependent reduction in Cdk5-dependent RIIβ phosphorylation alters the PKA holoenzyme auto-inhibitory state to increase PKA signaling in response to dopamine. Disruption of RIIβ phosphorylation by Cdk5, consequently, enhances cortico-ventral striatal synaptic plasticity. Acute and chronic stress in rats inversely modulate RIIβ phosphorylation and ventral striatal infusion of a small interfering peptide that selectively targets RIIβ regulation by Cdk5 improves behavioral response to stress. This new signaling mechanism integrating ventral striatal glutamate and dopamine neurotransmission is likely important to brain function, may contribute to neuropsychiatric conditions, and serves as a possible target for the development of novel therapeutics for stress-related disorders. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要