NOXA expression drives synthetic lethality to RUNX1 inhibition in pancreatic cancer

bioRxiv (Cold Spring Harbor Laboratory)(2021)

引用 13|浏览20
暂无评分
摘要
Evasion from drug-induced apoptosis is a crucial mechanism of cancer treatment resistance. The pro-apoptotic protein NOXA marks an aggressive pancreatic ductal adenocarcinoma (PDAC) subtype. To identify drugs that unleash the death-inducing potential of NOXA, we performed an unbiased drug screening experiment. In NOXA -deficient isogenic cellular models we identified an inhibitor of the transcription factor heterodimer CBFβ/RUNX1. By genetic gain and loss of function experiments we validated that the mode of action depends on RUNX1 and NOXA. Of note, RUNX1 expression is significantly higher in PDACs compared to normal pancreas. We show that pharmacological RUNX1 inhibition significantly blocks tumor growth in vivo and in primary patient-derived PDAC organoids. Through genome wide analysis, we detected that RUNX1 -loss reshapes the epigenetic landscape, which gains H3K27ac enrichment at the NOXA promoter. Our study demonstrates a previously unknown mechanism of NOXA-dependent cell death, which can be triggered pharmaceutically. Therefore, our data show a novel way to target a therapy resistant PDAC, an unmet clinical need. Significance Recent evidence demonstrated the existence of molecular subtypes in pancreatic ductal adenocarcinoma (PDAC), which resist all current therapies. The paucity of therapeutic options, including a complete lack of targeted therapies, underscore the urgent and unmet medical need for the identification of targets and novel treatment strategies for PDAC. Our study unravels a function of the transcription factor RUNX1 in apoptosis regulation in PDAC. We show that pharmacological RUNX1 inhibition in PDAC is feasible and leads to NOXA-dependent apoptosis. The development of targeted therapies that influence the transcriptional landscape of PDAC might have great benefits for patients who are resistant to conventional therapies. RUNX1 Inhibition as a new therapeutic intervention offers an attractive strategy for future therapies. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要