Pay "Attention" To Your Context When Classifying Abusive Language
THIRD WORKSHOP ON ABUSIVE LANGUAGE ONLINE(2019)
Abstract
The goal of any social media platform is to facilitate healthy and meaningful interactions among its users. But more often than not, it has been found that it becomes an avenue for wanton attacks. We propose an experimental study that has three aims: 1) to provide us with a deeper understanding of current datasets that focus on different types of abusive language, which are sometimes overlapping (racism, sexism, hate speech, offensive language and personal attacks); 2) to investigate what type of attention mechanism (contextual vs. self-attention) is better for abusive language detection using deep learning architectures; and 3) to investigate whether stacked architectures provide an advantage over simple architectures for this task.
MoreTranslated text
Key words
language,context,attention”
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined