谷歌浏览器插件
订阅小程序
在清言上使用

Intrinsic Thermal Desorption in a 3D Printed Multifunctional Composite CO2 Sorbent with Embedded Heating Capability

ACS applied materials & interfaces(2019)

引用 9|浏览6
暂无评分
摘要
Efficient removal of CO2 from enclosed environments is a significant challenge, particularly in human space flight where strict restrictions on mass and volume are present. To address this issue, this study describes the use of a multimaterial, layer-by-layer, additive manufacturing technique to directly print a structured multifunctional composite for CO2 sorption with embedded, intrinsic, heating capability to facilitate thermal desorption, removing the need for an external heat source from the system. This multifunctional composite is coprinted from an ink formulation based on zeolite 13X, and an electrically conductive sorbent ink formulation, which includes metal particles blended with the zeolite. The composites are characterized using analytical and imaging tools and then tested for CO2 adsorption/desorption. The resistivity of the conductive sorbent is <2 mΩ m, providing a temperature increase up to 200 °C under 7 V applied bias, which is sufficient to trigger CO2 desorption. The CO2 adsorption capability of the conductive zeolite ink appears to be unaffected by the presence of the conductive particles, meaning a large fraction of the total mass of the structured composite device is functional.
更多
查看译文
关键词
3D printing,additive manufacturing,multimaterial,devices,CO2 removal from air,adsorption,zeolite 13X,printed heater
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要