Microstructural and mechanical properties of marine clay cemented with industrial waste residue-based binder (IWRB)

Acta Geotechnica(2021)

引用 5|浏览2
暂无评分
摘要
Improving the engineering properties of low-strength soft clay in an environmentally friendly way becomes a challenge in coastal areas. Conventional ground treatment techniques for marine clay using cement can cause significant environmental pollution. In this study, the potential use of industrial waste residue-based binder (IWRB), a silicate-based chemical modified by a powdery polymer, as a substitute for Portland cement (PC) is investigated. Collected marine clay was treated with various IWRB-to-PC ratios (0:8, 4:4, 2:6 and 8:0 wt. %) to measure the mechanical properties, through unconfined compression (UC) test and one-dimensional consolidation (ODC) test, and the microstructural and mineralogical characters, through scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The strength and the deformation of specimens treated with mixed IWRB and PC in a ratio of 1:1 were similar to those improved with PC alone, but the toughness was significantly improved. The microstructural results demonstrated that the cementitious compounds (C–S–H and C–A–S–H) increased significantly in the early curing stage of marine clay treated with IWRB, contributing to the improvement of mechanical properties. It is suggested that IWRB can be an effective substitute for PC to reduce the cost and environmental pollution.
更多
查看译文
关键词
Ground improvement, Industrial waste residue-based binder, Marine clay, Mechanical properties, Microstructural properties, Portland cement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要