A Textile-Based Temperature-Tolerant Stretchable Supercapacitor for Wearable Electronics

ADVANCED FUNCTIONAL MATERIALS(2021)

引用 25|浏览7
暂无评分
摘要
Among the extensive development of wearable electronics, which can be implanted onto bodies or embedded in clothes, textile-based devices have gained significant attention. For daily basis applications, wearable energy storage devices are required to be stable under harsh environmental conditions and different deformational conditions. In this study, a textile-based stretchable supercapacitor with high electrochemical performance, mechanical stability, and temperature tolerance over a wide temperature range is reported. It exhibits high areal capacitances of 28.0, 30.4, and 30.6 mF cm(-2) at -30, 25, and 80 degrees C, respectively, while the capacitance remains stable over three repeated cycles of cooling and heating from -30 to 80 degrees C. The supercapacitor is stable under stretching up to 50% and 1000 repetitive cycles of stretching. A temperature sensor and an liquid-crystal display are simultaneously driven at temperatures between -20 and 80 degrees C by the supercapacitors. The supercapacitors are woven into a nylon glove power a micro-light-emitting diode stably regardless of the bending of the index finger. Furthermore, the encapsulated supercapacitors retain the capacitance during being immersed in water for a few days. This study demonstrates the potential application of the fabricated supercapacitor as a wearable energy storage device that works under extreme temperature variations, high humidity, and body movements.
更多
查看译文
关键词
stretchable supercapacitors, temperature-tolerant supercapacitors, textile-based supercapacitors, wearable electronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要