Chrome Extension
WeChat Mini Program
Use on ChatGLM

Continuous Capillary-Flow Sensing Of Glucose And Lactate In Sweat With An Electrochemical Sensor Based On Functionalized Graphene Oxide

SENSORS AND ACTUATORS B-CHEMICAL(2021)

Cited 39|Views20
No score
Abstract
We describe an electrochemical device for the simultaneous monitoring of glucose and lactate in sweat, based on enzymatic sensors exploiting capillary flow to induce continuous, stable sensing. The enzymes, namely glucose oxidase and lactate oxidase, were anchored to a graphene oxide and chitosan composite (GO-Ch) of original synthesis, to achieve stable deposition of the bioreceptors on the electrochemical platform. We tested both biosensors on a realistic device architecture: they were embedded in a nitrocellulose strip, to exploit capillary force to induce a continuous flux of sweat on the sensor platform, ensuring the constant renewal of sample. We could achieve good sensitivity at potentials close to zero by using Prussian Blue as redox mediator, thus avoiding interference from other chemical species present in the complex matrix. The sensing signal was stable and linear over two hours in a concentration range of glucose and lactate between the limit of quantification (32 and 68 nM, respectively) and the upper limit of linearity (3.8 and 50.0 mM, respectively). The device is simple, robust, stable, and can be easily worn without the direct contact of the active part with the skin, making it suitable for simultaneous monitoring of glucose and lactate in human sweat.
More
Translated text
Key words
Wearable biosensors, Biomarkers detection, Enzymatic detection, Functionalized graphene oxide, Dual electrode, Capillary flux
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined