The Impact Of Interfacial Si Contamination On Gan-On-Gan Regrowth For High Power Vertical Devices

APPLIED PHYSICS LETTERS(2021)

引用 13|浏览15
暂无评分
摘要
The development of gallium nitride (GaN) power devices requires a reliable selective-area doping process, which is difficult to achieve because of ongoing challenges associated with the required etch-then-regrow process. The presence of silicon (Si) impurities of unclear physical origin at the GaN regrowth interface has proven to be a major bottleneck. This paper investigates the origin of Si contamination at the epitaxial GaN-on-GaN interface and demonstrates an approach that markedly reduces its impact on device performance. An optimized dry-etching approach combined with UV-ozone and chemical etching is shown to greatly reduce the Si concentration levels at the regrowth interface, and a significant improvement in a reverse leakage current in vertical GaN-based p-n diodes is achieved. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要