Anapole Enhanced On-Chip Routing Of Spin-Valley Photons In 2d Materials For Silicon Integrated Optical Communication

OPTICS LETTERS(2021)

引用 5|浏览5
暂无评分
摘要
Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here, we report a design for enhancing valley emission and manipulating valley photon propagation based on degenerate non-radiating anapole states. By placing circularly polarized dipoles on top of a C-4 symmetric cross-slotted silicon disk, the rotating anapole state is excited with a Purcell factor up to two orders. In addition, the photon coupled to the preferred direction of the waveguide are about 2 times larger than that to the opposite direction. Our design could pave the way for realizing on-chip valley-dependent optical communication. (C) 2021 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要