Polymeric Substitution of Triazole Moieties in Cellulosic Schiff Base for Heavy Metal Complexation Studies

JOURNAL OF POLYMERS AND THE ENVIRONMENT(2021)

引用 0|浏览0
暂无评分
摘要
The adsorption of metal ions from wastewater using Schiff base cellulose bearing pendulant heterocyclic chelating groups (MC-Tz) as a sorbent is the subject of this paper. Solid state 13C-NMR, FT-IR, SEM, and XRD spectroscopy, as well as TGA and XRD were utilized to examine the adsorbent. The batch sorption process used pH, adsorbent dose, initial adsorbate concentration, temperature, as well as contact time to calculate the metal ion levels. The optimum pH-6.0, with the complexation reaction and ion exchange phase as the mechanisms at work. To investigate the equilibrium concentration and temperature-dependent rate constants, various models, such as the Langmuir, Freund, Temkin, and Redlich–Peterson adsorption isotherm were utilized. Maximum adsorption capacity of the modified cellulose (MC-Tz) towards Lead(II), Copper(II), Nickel(II), and Cadmium(II) were found to be 453.2, 485.5, 473.2, and 455.6 mg/g respectively. A Kinetic study shows that the Langmuir is more in agreement with the Pseudo-second order Kinetic model. Adsorption–Desorption experiments over four cycles demonstrated the feasibility of the sorbent's regeneration potential and the measured values of enthalpy and entropy explain the essence of the adsorption process. The objective of this research is to discover non-toxic, environmentally friendly adsorbent biodegradable components and to conduct evaluations to determine their use in wastewater treatment.
更多
查看译文
关键词
Modified cellulose,Spectral studies,Adsorption isotherms,Adsorption kinetics,Desorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要