Selective kinetic growth and role of local coordination in forming Al2TiO5-based coatings at lower temperatures

MATERIALS ADVANCES(2021)

引用 3|浏览2
暂无评分
摘要
Negative thermal expansion is an elusive property found among certain materials, whose potential applications have remained limited due to the many challenges faced in their synthesis. Herein, we report the successful formation of aluminium titanate-based coatings (Al2TiO5), a material renowned for its low-to-negative thermal expansion, by the co-deposition of aluminium-isopropoxide and titanium-isopropoxide in a hot-wall chemical vapour deposition instrument. While coatings grown at 450 degrees C were amorphous as-deposited, a short-range order into the Al2TiO5-phase was found and analysed by using Raman spectroscopy. Upon subsequent annealing at 700 degrees C for 3 hours, crystalline coatings were achieved without forming any binary phases. The selective synthesis of the Al2TiO5 phase is ascribed to the precursors' inherent chemical similarities, resulting in a kinetic targeting of this phase and a short-range homogeneity, entailing its preferred crystallisation. The role of local coordination is expressed by demonstrating the formation of intergrowth phases ascribed to lower coordinating interstices in the compound. Both the formation and crystallisation temperatures reported herein, as well as the timescales needed for the synthesises, are considerably lower than any conventional adopted solid-state techniques used so far to attain the Al2TiO5 phase.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要