Effect Of Surface Treatments On Ald Al2o3/4h-Sic Metal-Oxide-Semiconductor Field-Effect Transistors

JOURNAL OF APPLIED PHYSICS(2021)

引用 7|浏览7
暂无评分
摘要
Silicon carbide (4H) based metal-oxide-semiconductor field-effect transistors provide capabilities in high power and high temperature inaccessible to silicon. However, the performance of thermally grown oxide-based devices remains limited by oxide/semiconductor interface defects. This research employs deposited dielectrics, Al2O3, rather than thermal oxidation. Investigation of various pre-deposition processes reveals different degrees of improvements in the electronic properties. An optimum structure employs the preparation of a nitrided surface via NO annealing, a process known to passivate surface defects, a hydrogen exposure, followed by Al2O3 deposition. Inversion layer field-effect mobilities as high as 52cm(2)/Vs are reported in the optimum structures. Capacitance-voltage measurements and field-effect mobility characteristics indicate a trapping limited conductivity in Al2O3/4H-SiC inversion channels similar to SiO2/4H-SiC. Leakage currents and interface breakdown are also reported for various Al2O3/4H-SiC MOS structures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要