Stability, Surface Tension, And Thermal Conductivity Of Al2o3/Water Nanofluids According To Different Types Of Alcohol And Their Proportion

CASE STUDIES IN THERMAL ENGINEERING(2021)

引用 21|浏览3
暂无评分
摘要
In this study, the stability, surface tension, and thermal conductivity of Al2O3/water nanofluids with different types of alcohol fluids were investigated. Different types of alcohols (butanol, pentanol, and hexanol) were added to the Al2O3/water nanofluid. From the UV-vis spectroscopy results, Al2O3/water nanofluids did not show a significant absorbance difference for concentrations more than 0.5 wt%. From 0.1 to 0.5 wt% the absorbance enhancement ratio was 101.3%; however, it was 9.0% from 0.5 to 0.9 wt%. Therefore, 0.5 wt% Al2O3 nanofluids are effective in terms of fluid dispersibility. During the zeta potential measurement of the nanofluid stability, increasing the Al2O3 in the nanofluids caused more instability. However, the type and concentration of the aqueous alcohol solutions without Al2O3 did not significantly affect the stability characteristics. The contact angle of the alcohol-based nanofluids at saturated concentrations showed a decrease of at least 18.7%. Adding Al2O3 nanoparticles to the alcohol-based nanofluids increased the surface tension by an average of 3.4%. The thermal conductivity of the alcoholbased nanofluids was lower than that of distilled water. However, the addition of Al2O3 can enhance their thermal conductivity. The thermal conductivity lowered by the alcohol-based fluids enhanced by an average of 73.4% after adding Al2O3.
更多
查看译文
关键词
Self-rewetting fluids, Al2O3, Heat transfer, Stability, Surface tension, Thermal conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要