UiO-66-NH-(AO) MOFs with a New Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 31|浏览14
暂无评分
摘要
Metal-organic frameworks (MOFs) with a high surface area and excellent stability are potential candidates for uranium (U) adsorption. Amidoxime (AO) is the most widely used functional group to extract U, which is usually introduced into MOFs by two-step post-synthetic methods (PSMs). Herein, MOF UiO-66-NH-(AO) was obtained by a one-step PSM with amidoximation from UiO-66-NH-(CN), which was synthesized by a new organic ligand of 2-cyano-terephthalic acid and whose morphology was octahedron and could be well controlled with the new ligand. The one-step PSM can greatly maintain the octahedron of the MOFs. What is more, UiO-66-NH-(AO) showed good adsorption performance for U, the adsorption equilibrium was obtained within 1500 min, and the adsorption capacity of U was calculated to be 134.1 mg/g according to the Langmuir model. It also had excellent selectivity for U in the presence of high concentrations of vanadium (V), ferrum (Fe), magnesium (Mg), calcium (Ca), and zirconium (Zr). The adsorption capacity of U in natural seawater was determined to be 5.2 mg/g within 8 days. The recyclability of UiO-66-NH-(AO) in simulated seawater was demonstrated for at least four adsorption/desorption cycles. The binding mechanism was investigated by the extended X-ray absorption fine structure spectroscopy, revealing that U binding occurs in a fashion eta(2) motif. This study provides a reliable idea for the modification of MOFs and the potential for MOF-based materials to extract U from seawater.
更多
查看译文
关键词
metal-organic frameworks, controllable morphology, amidoxime, uranium, seawater
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要