Species- and Tissue-Specific Chronic Toxicity Values for Northern Bobwhite Quail (Colinus virginianus) Exposed to Perfluorohexane Sulfonic Acid and a Binary Mixture of Perfluorooctane Sulfonic Acid and Perfluorohexane Sulfonic Acid

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY(2022)

引用 4|浏览6
暂无评分
摘要
Per- and polyfluoroalkyl substances (PFAS) are globally distributed and present in nearly every environmental compartment. Characterizing the chronic toxicity of individual PFAS compounds and mixtures is necessary because many have been reported to cause adverse health effects. To derive toxicity reference values (TRVs) and conduct ecotoxicological risk assessments (ERAs) of PFAS-contaminated ecosystems for wildlife, species-specific PFAS chronic toxicity values (CTVs) are needed. The present study quantified PFAS residues from liver and eggs of birds chronically exposed to perfluorohexanoic acid (PFHxA) or a mixture of perfluorooctane sulfonate (PFOS) and PFHxA that produced a no-observable-adverse-effect level (NOAEL) and/or a lowest-observable-adverse-effectlevel (LOAEL). The CTVs we present are lower than those previously reported for birds and should be considered in future regulatory evaluations. From the estimated species- and tissue-specific PFAS CTVs, we found that PFOS and perfluorohexane sulfonate (PFHxS) were more bioaccumulative than PFHxA in avian tissues, but PFHxA was more toxic to reproducing birds than either PFOS or a PFOS:PFHxS mixture. We further determined that avian toxicity was not necessarily additive with respect to PFAS mixtures, which could have implications for PFAS ERAs. The PFAS LOAEL CTVs can be used to predict reproductive and possible population-level adverse health effects in wild avian receptors. Environ Toxicol Chem 2021;00:1-11. (c) 2021 SETAC
更多
查看译文
关键词
Analytical chemistry, Avian toxicity, Bioaccumulative compounds, Mixture toxicology, Risk assessment, Per- and polyfluoroalkyl substances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要