Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: Concentrations, interactions, and risks

SCIENCE OF THE TOTAL ENVIRONMENT(2022)

引用 13|浏览7
暂无评分
摘要
Small streams are crucial but vulnerable elements of ecological networks. To better understand the occurrence of pharmaceutically active compounds (PhACs) in streams, this study focused on the occurrence, distribution, and environmental risk of 111 PhACs and 7 trace elements based on a total of 141 water and sediment samples from small streams located in the urbanizing region of Budapest, Hungary. Eighty-one PhACs were detected in the aqueous phase, whereas sixty-two compounds were detected in the sediment. Carbamazepine (CBZ) was the most frequently identified PhAC in water, and was found in 91.5% of all samples. However, the highest concentrations were measured for lamotrigine (344.8 mu g.L-1) and caffeine (221.4 mu g.L-1). Lidocaine was the most frequently occurring PhAC in sediment (73.8%), but the maximum concentrations were detected for CBZ (395.9 ng.g(-1)) and tiapride (187.7 ng.g(-1)). In both water and sediment, more PhACs were found downstream of the wastewater treatment plants (WWTPs) than in the samples not affected by treated wastewater, even though no relationship was observed between the total amount of treated wastewater and the number of detected PhACs. The PhAC concentrations were also independent of the distance from the WWTP effluents. PhAC-polluted samples were detected upstream of the WWTPs, thereby the relevance of diffuse emissions in addition to WWTP outlets. The mast frequently detected PhACs in the sediment were usually also present in the water samples collected at the same place and time. The varying concentrations of PhACs and the fluctuating water-sediment properties resulted in a lack of correlation between the general chemical properties and the concentrations of PhACs, which makes it difficult to predict PhAC contamination and risks in urbanized small streams. The environmental risk assessment indicated that diclofenac had the highest risk in the sampling area.
更多
查看译文
关键词
Small stream,Sediment,Pharmaceutically active compounds,Pollution,Environmental risk assessment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要