Platonic Bell inequalities for all dimensions

QUANTUM(2022)

引用 3|浏览2
暂无评分
摘要
In this paper we study the Platonic Bell inequalities for all possible dimensions. There are five Platonic solids in three dimensions, but there are also solids with Platonic properties (also known as regular polyhedra) in four and higher dimensions. The concept of Platonic Bell inequalities in the three-dimensional Euclidean space was introduced by Tavakoli and Gisin [Quantum 4, 293 (2020)]. For any three-dimensional Platonic solid, an arrangement of projective measurements is associated where the measurement directions point toward the vertices of the solids. For the higher dimensional regular polyhedra, we use the correspondence of the vertices to the measurements in the abstract Tsirelson space [B. Tsirelson, J. Soviet Math. 36, 557 (1987)]. We give a remarkably simple formula for the quantum violation of all the Platonic Bell inequalities, which we prove to attain the maximum possible quantum violation of the Bell inequalities, i.e. the Tsirelson bound. To construct Bell inequalities with a large number of settings, it is crucial to compute the local bound efficiently. In general, the computation time required to compute the local bound grows exponentially with the number of measurement settings. We find a method to compute the local bound exactly for any bipartite two-outcome Bell inequality, where the dependence becomes polynomial whose degree is the rank of the Bell matrix. To show that this algorithm can be used in practice, we compute the local bound of a 300-setting Platonic Bell inequality based on the halved do-decaplex. In addition, we use a diagonal modification of the original Platonic Bell matrix to increase the ratio of quantum to local bound. In this way, we obtain a four-dimensional 60-setting Platonic Bell inequality based on the halved tetraplex for which the quantum violation exceeds the maximum quantum violation of the famous Clauser-Horne-Shimony-Holt Bell inequality. This is the first example of a Platonic Bell inequality exceeding the root 2 ratio.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要