谷歌浏览器插件
订阅小程序
在清言上使用

Self-Assembled Nanomicelles to Enhance Solubility and Anticancer Activity of Etoposide

Assay and drug development technologies(2021)

引用 4|浏览5
暂无评分
摘要
It is hypothesized that etoposide/VP-16 nanomicellar formulation (VP-16 NMF) utilizing D-alpha-Tocopherol polyethylene glycol 1000 succinate (TPGS) can improve etoposide solubility and anticancer activity. The following four different concentrations of TPGS: 3, 6, 8, and 10 wt% were used to solubilize the drug. Among these four formulations, 10 wt% of TPGS loaded with VP-16 NMF dramatically enhanced etoposide apparent solubility by 26-folds compared with the native drug. The physicochemical properties of the optimized formulation were further analyzed by dynamic light scattering, X-ray powder diffraction, scanning electron microscopy, proton nuclear magnetic resonance (1HNMR) and Fourier transform infrared spectroscopy. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) was used to assess solubility and intracellular uptake of the drug from the NMF. Cell viability assay ([3-(4,5- dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium solution [MTS]) was performed on MCF-7 and MCF- 10A cell lines to assess intracellular uptake and anticancer activity of etoposide. The MTS assay results showed that the VP-16 NMF platform provides a higher anticancer activity than the native VP-16 on the MCF-7 cells line as it integrates a dual anticancer activity of VP-16 and TPGS. LC-MS/MS data showed a threefold increase in cellular uptake of VP-16 NMF in MCF-7 cell line compared with the native etoposide. These data suggest that an optimal TPGS concentration can improve VP-16 bioavailability and efficacy with potential benefits for chemotherapy.
更多
查看译文
关键词
etoposide,solubility enhancement,anticancer activity,cell lines,polymeric nanomicelles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要