谷歌浏览器插件
订阅小程序
在清言上使用

Single-cell Senseless protein analysis reveals metastable states during the transition to a sensory organ fate

iScience(2022)

引用 1|浏览3
暂无评分
摘要
Cell fate decisions can be envisioned as bifurcating dynamical systems, and the decision that Drosophila cells make during sensory organ differentiation has been described as such. We extended these studies by focusing on the Senseless protein which orchestrates sensory cell fate transitions. Wing cells contain inter-mediate Senseless numbers before their fate transition, after which they express much greater numbers of Senseless molecules as they differentiate. However, the dynamics are inconsistent with it being a simple bistable system. Cells with intermediate Senseless are best modeled as residing in four discrete states, each with a distinct protein number and occupying a specific region of the tissue. Although the states are stable over time, the number of molecules in each state vary with time. The fold change in molecule number between adjacent states is invariant and robust to absolute protein number variation. Thus, cells transition-ing to sensory fates exhibit metastability with relativistic properties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要