谷歌浏览器插件
订阅小程序
在清言上使用

The HSV-1 ICP22 Protein Selectively Impairs Histone Repositioning Upon Pol II Transcription Downstream of Genes

NATURE COMMUNICATIONS(2023)

引用 1|浏览13
暂无评分
摘要
Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in & UDelta;ICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection. Herpes simplex virus 1 (HSV-1) infection disrupts transcription termination by RNA Polymerase II. Here, Djakovic et al. identify the immediate-early protein ICP22 protein of HSV-1 to induce open chromatin downstream of genes upon read-through transcription involving the histone chaperone FACT.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要