Electronic Properties of Oxidized Graphene: Effects of Strain and an Electric Field on Flat Bands and the Energy Gap

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2022)

引用 5|浏览2
暂无评分
摘要
A multiscale modeling and simulation approach, including firstprinciples calculations, ab initio molecular dynamics simulations, and a tight binding approach, is employed to study band flattening of the electronic band structure of oxidized monolayer graphene. The width of flat bands can be tuned by strain, the external electric field, and the density of functional groups and their distribution. A transition to a conducting state is found for monolayer graphene with impurities when it is subjected to an electric field of similar to 1.0 V/A. Several parallel impurity-induced flat bands appear in the low-energy spectrum of monolayer graphene when the number of epoxy groups is changed. The width of the flat band decreases with an increase in tensile strain but is independent of the electric field strength. Here an alternative and easy route for obtaining band flattening in thermodynamically stable functionalized monolayer graphene is introduced. Our work discloses a new avenue for research on band flattening in monolayer graphene.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要