Cosmogenic production of Ar-37 in the context of the LUX-ZEPLIN experiment

J. Aalbers, D. S. Akerib,A. K. Al Musalhi, F. Alder, S. K. Alsum, C. S. Amarasinghe,A. Ames,T. J. Anderson,%N. Angelides,N. Angelides, H. M. Ara'{ujo, J. E. Armstrong, M. Arthurs,X. Bai,A. Baker, J. Balajthy, S. Balashov,J. Bang, J. W. Bargemann,D. Bauer,A. Baxter,K. Beattie, E. P. Bernard,A. Bhatti, A. Biekert,T. P. Biesiadzinski, H. J. Birch, G. M. Blockinger, E. Bodnia,B. Boxer, C. A. J. Brew, P. Br'{as, S. Burdin, J. K. Busenitz, M. Buuck, R. Cabrita,M. C. Carmona-Benitez, M. Cascella, C. Chan,A. Chawla, N. I. Chott,A. Cole, M. V. Converse,A. Cottle,G. Cox,O. Creaner,J. E. Cutter, C. E. Dahl,A. David,L. de Viveiros, J. E. Y. Dobson, E. Druszkiewicz, S. R. Eriksen,A. Fan,S. Fayer, N. M. Fearon, S. Fiorucci, H. Flaecher, E. D. Fraser, T. Fruth,R. J. Gaitskell,J. Genovesi, C. Ghag,E. Gibson,M. G. D. Gilchriese,S. Gokhale,M. G. D. van der Grinten,C. B. Gwilliam, C. R. Hall,S. J. Haselschwardt,S. A. Hertel, M. Horn, D. Q. Huang,D. Hunt,C. M. Ignarra,O. Jahangir,R. S. James, W. Ji, J. Johnson,A. C. Kaboth, A. C. Kamaha,K. Kamdin,D. Khaitan, A. Khazov, I. Khurana,D. Kodroff, L. Korley,E. V. Korolkova, H. Kraus,S. Kravitz, L. Kreczko, V. A. Kudryavtsev, E. A. Leason,D. S. Leonard,K. T. Lesko,C. Levy,J. Lee,J. Lin,A. Lindote, R. Linehan,W. H. Lippincott,X. Liu,M. I. Lopes,E. Lopez Asamar, B. Lopez-Paredes,W. Lorenzon,S. Luitz, P. A. Majewski,A. Manalaysay,L. Manenti,R. L. Mannino,N. Marangou, M. E. McCarthy,D. N. McKinsey,J. McLaughlin, E. H. Miller, E. Mizrachi,A. Monte,M. E. Monzani,J. A. Morad,J. D. Morales Mendoza,E. Morrison, B. J. Mount,A. St. J. Murphy, D. Naim,A. Naylor, C. Nedlik,H. N. Nelson,F. Neves, J. A. Nikoleyczik,A. Nilima, I. Olcina, K. Oliver-Mallory,S. Pal,K. J. Palladino,J. Palmer,N. Parveen,S. J. Patton,E. K. Pease,B. Penning,G. Pereira,E. Perry, J. Pershing,A. Piepke, D. Porzio,Y. Qie,J. Reichenbacher, C. A. Rhyne,A. Richards,Q. Riffard,%Q. Riffard,G. R. C. Rischbieter, R. Rosero,P. Rossiter, T. Rushton,D. Santone, A. B. M. R. Sazzad, R. W. Schnee,P. R. Scovell,S. Shaw,T. A. Shutt, J. J. Silk,C. Silva, G. Sinev,R. Smith,M. Solmaz,V. N. Solovov,P. Sorensen,J. Soria,I. Stancu,A. Stevens, K. Stifter, B. Suerfu,T. J. Sumner,N. Swanson,M. Szydagis,W. C. Taylor,R. Taylor, D. J. Temples,P. A. Terman,D. R. Tiedt,M. Timalsina,W. H. To,Z. Tong,D. R. Tovey, M. Trask,M. Tripathi, D. R. Tronstad, W. Turner, U. Utku, A. Vaitkus, B. Wang,Y. Wang,J. J. Wang,W. Wang,J. R. Watson,R. C. Webb,R. G. White,T. J. Whitis,M. Williams, F. L. H. Wolfs, S. Woodford,D. Woodward,C. J. Wright, Q. Xia,X. Xiang, J. Xu,M. Yeh

PHYSICAL REVIEW D(2022)

引用 8|浏览37
暂无评分
摘要
We estimate the amount of Ar-37 produced in natural xenon via cosmic-my-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth's surface. We then calculate the resulting Ar-37 concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of Ar-37 in natural xenon is estimated to be 0.024 atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1 tonne/month, the average Ar-37 activity after 10 tons are purified and transported underground is 0.058 - 0.090 mu Bq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic Ar-37 will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of Ar-37 should be considered when planning for future liquid-xenon-based experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要