The reduced-charge melittin analogue MelP5 improves the transfection of non-viral DNA nanoparticles.

Journal of peptide science : an official publication of the European Peptide Society(2022)

引用 0|浏览2
暂无评分
摘要
Melittin is a 26-amino acid amphiphilic alpha-helical peptide derived from honeybee venom. Prior studies have incorporated melittin into non-viral delivery systems to effect endosomal escape of DNA nanoparticles and improve transfection efficiency. Recent advances have led to the development of two newer melittin analogues, MelP5 and Macrolittin 70, with improved pore formation in lipid bilayers while possessing fewer positive charges relative to natural melittin. Consequently, MelP5 and Macrolittin 70 were conjugated through a disulfide bond to a DNA binding polyacridine peptide. The resulting peptide conjugates were used to prepare DNA nanoparticles to compare their relative endosomolytic potency by transfection of HepG2 cells. Melittin and MelP5 conjugates were equally potent at mediating in vitro gene transfer, whereas PEGylation of DNA nanoparticles revealed improved transfection with MelP5 relative to melittin. The results demonstrate the ability to substitute a potent, reduced-charge analogue of melittin to improve overall DNA nanoparticle biocompatibility needed for in vivo testing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要